
Exam sets October 2024

Always explain your answers. It is allowed to refer to definitions, lemmas and
theorems from the lecture notes but not to other sources. All questions are
independent and count equally so make sure you try each of them. Good luck!

0. Define the function f : N → Q by f(x) = 6 for all x ∈ N. Describe the set
f−1({0, 1}) explicitly and explain your answer.

1. Give an explicit example of a set X and an injective function f : X → X
that is not surjective. Make sure you prove your statements.

2. Explain what is wrong the following reasoning: For all n ≥ 102024

we have 2n < 2n−1. This is proven by induction as follows: Define for
every n ∈ N the statement Sn to be 22024+n < 22023+n. Now suppose
Sn holds for some n ∈ N then we will show Sn+1 must also be true. To
prove Sn+1 we multiply both sides of the inequality 22024+n < 22023+n

(guaranteed by Sn) by 2 to obtain 22024+n+1 < 22023+n. This proves that
Sn implies Sn+1 for all n. By induction we have thus demonstrated that
Sn holds for all n ∈ N.

3. Imagine a set A with at least two elements. Define a relation ∼ on A×A
by setting (a, b) ∼ (c, d) iff a = d and b = c. Is ∼ an equivalence relation
on A×A?

4. Recall that [k] = {0, 1, . . . k− 1}. Find the cardinality of
⋂

n∈N[n+1] and
prove your result.

5. Prove that if A,B and C are sets then (A \B)× C ⊆ A× C.

6. Define F : ZZ → Z by F (g) = (g ◦ g ◦ g)(0) for any g ∈ ZZ. Find the range
of F and prove your claim.

7. Suppose we have an equivalence relation ∼ on {a, b, c, d} and assume that
a ∼ b and c ∼ b. Show that {a, b, c} is a subset of the equivalence class of
c.

8. Define a sequence of subsets A0, A1, A2, . . . of N as follows. A0 = [0] and
A1 = [1] and for n ≥ 2 we set An = An−1 ∩ Ac

n−2, where Xc = N \ X.
Prove that for all n ∈ N the set An is finite.

9. Prove that if sets A and B are both uncountable sets then A ∪ B is
uncountable as well.



Solutions

0. Define the function f : N → Q by f(x) = 6 for all x ∈ N. Describe the set
f−1({0, 1}) explicitly and explain your answer.
f−1({0, 1}) = {n ∈ N : f(n) ∈ {0, 1}} = ∅ because the function f never
takes the values 0 or 1.,

1. Give an explicit example of a set X and an injective function f : X → X
that is not surjective. Make sure you prove your statements.
Take X = N and define f by f(n) = n+ 1. Then f is injective because if
f(x) = f(y) for some x, y ∈ ⋉ then x+ 1 = y + 1 so x = y. However f is
not surjective since f(x) > 0 holds for all n since adding one to a natural
number produces a positive number. In other words 0 is not in the range
of f as required,

2. Explain what is wrong the following reasoning: For all n ≥ 102024

we have 2n < 2n−1. This is proven by induction as follows: Define for
every n ∈ N the statement Sn to be 22024+n < 22023+n. Now suppose
Sn holds for some n ∈ N then we will show Sn+1 must also be true. To
prove Sn+1 we multiply both sides of the inequality 22024+n < 22023+n

(guaranteed by Sn) by 2 to obtain 22024+n+1 < 22023+n. This proves that
Sn implies Sn+1 for all n. By induction we have thus demonstrated that
Sn holds for all n ∈ N.
The induction basis, the case S0 was never checked and is indeed false:
22024 = 2 ∗ 22023 > 22023.

3. Imagine a set A with at least two elements. Define a relation ∼ on A×A
by setting (a, b) ∼ (c, d) iff a = d and b = c. Is ∼ an equivalence relation
on A×A?
No because it is not reflexive: for example if x, y are two distinct elements
in A then (x, y) is not equivalent to x, y because x ̸= y.

4. Recall that [k] = {0, 1, . . . k− 1}. Find the cardinality of
⋂

n∈N[n+1] and
prove your result.
The intersection contains those elements contained in all the sets [n + 1]
where n runs throught the natural numbers but the case n = 0 yields a
set with a single element [1] = {0}. All other sets [n+1] also contain 0 by
definition so the intersection is {0} and its cardinality is 1 because it con-
tains one element and id[1] provides an invertible function demonstrating
the cardinality ,

5. Prove that if A,B and C are sets then (A \B)× C ⊆ A× C.
Any element x ∈ (A\B)×C must be of the form x = (r, c) where r ∈ A\B
and c ∈ C. In particular x ∈ A × C because x = (r, c) and we already
stated that r ∈ A and c ∈ C as required ,

6. Define F : ZZ → Z by F (g) = (g ◦ g ◦ g)(0) for any g ∈ ZZ. Find the range
of F and prove your claim.



For any z ∈ Z consider the constant functions Cz ∈ ZZ defined by
Cz(n) = z. Then Cz ◦Cz = Cz because for any n we have (Cz ◦Cz)(n) =
Cz(Cz(n)) = Cz(z) = z = Cz(n) and hence also Cz ◦ Cz ◦ Cz = Cz. This
means that F (Cz) = (Cz ◦ Cz ◦ Cz)(0) = Cz(0) = z. It allows us to prove
that F is surjective and so the range is Z because for any z ∈ Z we have
F (Cz) = z as shown above.

7. Suppose we have an equivalence relation ∼ on {a, b, c, d} and assume that
a ∼ b and c ∼ b. Show that {a, b, c} is a subset of the equivalence class of
c.
By symmetry we have b ∼ c and by transitivity we thus get a ∼ c showing
that a, b, c ∈ c̄ meaning {a, b, c} ⊆ c̄ as required ,

8. Define a sequence of subsets A0, A1, A2, . . . of N as follows. A0 = [0] and
A1 = [1] and for n ≥ 2 we set An = An−1 ∩ Ac

n−2, where Xc = N \ X.
Prove that for all n ∈ N the set An is finite.
We use induction to prove that for every n ∈ N the statement Sn that
says: An is finite. The induction basis is the case S0 and by definition
A0 = [0] is a finite set. Now assume that Sn holds for some n (this is
our induction hypothesis). Then we will demonstrate that it follows that
Sn+1 is also true. In case n = 0 we already know that Sn+1 = S1 = [1] is
finite. For n > 0 we write An+1 = An ∩ Ac

n−1 ⊆ An. By Sn the set An

is finite and we know from the lecture notes that a subset of a finite set
is finite so An+1 must be finite proving Sn+1. This finishes the induction
proof and shows that Sn holds for all n ∈ N. In other words An is finite
for all natural numbers n ,

9. Prove that if sets A and B are both uncountable sets then A ∪ B is
uncountable as well.
We give a proof by contradiction so assume that X = A∪B is countable.
The idea is that if f : X → Y is invertible then the restriction r : A →
f(A) is also invertible with inverse given by r−1(y) = f−1(y).

The first case to consider is X is finite, so Y = [n] for some n ∈ N. This
implies that f(A) ⊆ [n] is also finite since in Chapter 2 we proved that
any subset of a finite set is finite. Using the invertible r defined above we
find that A must also be finite which is absurd.

The second case to consider is that Y = N. To apply the same argument
we need to demonstrate W = f(A) is countable. To do so will give an
invertible function g : W → N below. The composition g ◦ f will then
show A must also be countable.

To define g first introduce for any m ∈ N the finite set Gm = {w ∈
W : w < m}. It is indeed finite since Gm ⊆ [m] (see above). Now
define g(m) = #Gm. To show g is invertible we prove g is injective and
surjective. Assume v, w ∈ W are such that g(v) = g(w) then we can
assume that w ≤ v so that Gw ⊆ Gv. If w < v then w ∈ Gv but w /∈ Gw

showing that g(w) < g(v) so we conclude w = v. To show g is surjective



we use induction to prove the statements Sn saying that there exists an
x ∈ W such that g(x) = n. As a basis we demonstrate S0 by noting that
g(minB) = 0. Assuming Sn we have some x such that #Gx = n and
consider the set C = B \Gx. If C∅ then f(A) = B ⊆ Gx would be finite
so A is a finite set. Therefore we can take the minimal element c = minC
and note that Gx ∪ {c} = {Gc} and since c /∈ Gx we have #Gc = n + 1
proving Sn+1. We thus found an invertible g as required ,


